Non-uniform Continuity of the Generalized Camassa–Holm Equation in Besov Spaces
نویسندگان
چکیده
In the paper, we gave a strengthening of our previous work in \cite{Li1} (J. Differ. Equ. 269 (2020)) and proved that data-to-solution map for Camassa-Holm equation is nowhere uniformly continuous $B^s_{p,r}(\R)$ with $s>\max\{1+1/{p},3/2\}$ $(p,r)\in [1,\infty]\times[1,\infty)$. The method applies also to b-family equations which contain Degasperis-Procesi equations.
منابع مشابه
Uniform Convergence and Uniform Continuity in Generalized Metric Spaces
In the paper [9] we introduced the class of generalized metric spaces. These spaces simultaneously generalize ‘standard’ metric spaces, probabilistic metric spaces and fuzzy metric spaces. We show that every generalized metric space is, naturally, a uniform space. Thus we can use standard topological techniques to study, for example, probabilistic metric spaces. We illustrate this by proving a ...
متن کاملGeneralized hyperstability of the cubic functional equation in ultrametric spaces
In this paper, we present the generalized hyperstability results of cubic functional equation in ultrametric Banach spaces using the fixed point method.
متن کاملCoherence Spaces and Uniform Continuity
In this paper, we consider a model of classical linear logic based on coherence spaces endowed with a notion of totality. If we restrict ourselves to total objects, each coherence space can be regarded as a uniform space and each linear map as a uniformly continuous function. The linear exponential comonad then assigns to each uniform space X the finest uniform space !X compatible with X . By a...
متن کاملSome functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition
Some functional inequalities in variable exponent Lebesgue spaces are presented. The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non- increasing function which is$$int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleqCint_0^infty f(x)^{p(x)}u(x)dx,$$ is studied. We show that the exponent $p(.)$ for which these modular ine...
متن کاملStability of generalized QCA-functional equation in P-Banach spaces
In this paper, we investigate the generalizedHyers-Ulam-Rassias stability for the quartic, cubic and additivefunctional equation$$f(x+ky)+f(x-ky)=k^2f(x+y)+k^2f(x-y)+(k^2-1)[k^2f(y)+k^2f(-y)-2f(x)]$$ ($k in mathbb{Z}-{0,pm1}$) in $p-$Banach spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nonlinear Science
سال: 2022
ISSN: ['0938-8974', '1432-1467']
DOI: https://doi.org/10.1007/s00332-022-09866-x